

Will sustainable intensification help us avoid exceeding 2 °C?

Lini Wollenberg,¹ Meryl Richards,¹ Petr Havlík,² Pete Smith,³ Francesco Tubiello,⁴ Sarah Carter⁵ and Martin Herold⁵

- ¹ CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Gund Institute for Ecological Economics, University of Vermont
- ² International Institute for Applied Systems Analysis (IIASA)
- ³ University of Aberdeen
- ⁴ Food and Agriculture Organization
- ⁵ Wageningen University and Research Centre

Montpellier March 16-18, 2015

Sustainable intensification is the current paradigm for agricultural development

Claims to mitigation: increase GHG emissions efficiency and sparing of high C ecosystems

Livestock productivity, feed

Efficient N fertilizer use

Residue mgmt.

Herrero et al. 2013, PNAS

Can intensification also help meet hard climate goals?

Meet future food needs and achieve climate policy targets in agriculture such as 2 °C?

- Reduce the GHG emissions of production
- Avoid conversion of carbon-rich forests, grasslands and peatlands

9-10 billion people, ûincome, diet

Agricultural baseline to 2050

FAO global perspective studies (Alexandratos and Bruinsma 2012)
146 countries, 34 crops

60% more food

90% of increase in annual production in developing countries, esp. from livestock

Intensified & expanded agriculture

CH4 & N₂O emissions

Land use change and CO₂

Expected sources of growth in crop production (%) 2005/7 to 2050

	Arable land expansion	Increases in cropping intensity	Yield increases
Developing countries	21	6	73
World	10	10	80

Adapted from Bruinsma 2009 FAO

Scenario of intensification

Projected emissions for the FAO agriculture baseline

Calculating emissions for a 2°C aspirational target

2030 emissions reflect assumptions of each pathway

RCP Scenarios:

- RCP2.6 represents
 2.6 W/m² radiative forcing in
 2100, ~450 ppm CO₂e
- Limits warming to 0.3 to
 1.7 °C during 2081 2100
- Contrast to the RCP 8.5, representing 8.5 W/m², 1370 ppm CO₂e, ~4.9 °C

Target emissions compared against baselines: Mitigation needed in 2030

I. Business-as-usual intensification will not achieve the mitigation needed in the agriculture sector by 2030

How much can mitigation practices contribute to the 2 °C policy target?

Selected mitigation practices compatible with food production

- Cropland management
- Grazing land management
- Livestock

Not

- Rewetting peatlands
- Cropland set aside

IPCC AR5 Table 11.2

Categories	Practices and Impacts	Technical Mitiga- tion Potential	Ease of Imple- mentation	Timescale for implementation
	Land-based agriculture			
Cropland management				
Croplands—plant management	C: High input carbon practices, e.g., improved crop varieties, crop rotation, use of cover crops, perennial cropping systems, agricultural biotechnology.			
	N ₂ O: Improved N use efficiency.			
Croplands—nutrient management	C: Fertilizer input to increase yields and residue inputs (especially important in low-yielding agriculture).			
	N ₂ O: Changing N fertilizer application rate, fertilizer type, timing, precision application, inhibitors.			
	C: Reduced tillage intensity; residue retention.			
Croplands—tillage/residues management	N ₂ O:			
	CH _{4:}			
	C: Improved water availability in cropland including water harvesting and application.			
Croplands—water management	CH ₄ : Decomposition of plant residues.			
	N ₂ O: Drainage management to reduce emissions, reduce N runoff leaching.			
Croplands—rice management	C: Straw retention.			
	CH _a : Water management, mid-season paddy drainage.			
	N ₂ O: Water management, N fertilizer application rate,			
	fertilizer type, timing, precision application.			
Grazing Land Management				
Grazing lands—plant management	C: Improved grass varieties/sward composition, e.g., deep rooting grasses,			
	increased productivity, and nutrient management. Appropriate stocking densities,			
	carrying capacity, fodder banks, and improved grazing management.			
	N ₂ O			
Grazing lands—animal management	C: Appropriate stocking densities, carrying capacity management, fodder banks and			
	improved grazing management, fodder production, and fodder diversification.			
	CH ₄			
	N ₂ O: Stocking density, animal waste management.			
Grazing land—fire management	C: Improved use of fire for sustainable grassland management. Fire prevention and improved prescribed burning.			
management	Livestock			
	CH _a : Improved feed and dietary additives to reduce emissions from enteric fermentation; including improved forage, dietary additives			
Livestock—feeding	(bioactive compounds, fats), ionophores/antibiotics, propionate			
	enhancers, archaea inhibitors, nitrate and sulphate supplements.			
Livestock—breeding and other long-term management	CH ₄ : Improved breeds with higher productivity (so lower emissions per unit			
	of product) or with reduced emissions from enteric fermentation; microbial technology such as archaeal vaccines, methanotrophs, acetogens, defaunation			
	of the rumen, bacteriophages and probiotics; improved fertility.			
Manure management	CH _a : Manipulate bedding and storage conditions, anaerobic			
	digesters; biofilters, dietary additives.			
	N2O: Manipulate livestock diets to reduce N excreta, soil applied and animal			
	fed nitrification inhibitors, urease inhibitors, fertilizer type, rate and timing,			
	manipulate manure application practices, grazing management.			

Calculated mitigation with global data sets

- Bottom-up technology-by-technology estimates (Smith 2007, 2008, University of Aberdeen, IPCC) \$20 tCO₂
- 2. Production efficiency gains (trade and location, production system) using integrated assessment modeling (Havlík 2014, IIASA) \$20, \$50 tCO₂
- 3. Bottom-up agroforestry (Neufeldt 2014, ICRAF)

How close to the 2°C goal can we get?

II. Plausible interventions will achieve only 10-40% of mitigation needed in agriculture by 2030

Will future food needs and intensification increase deforestation?

In theory, plenty of land:

~81-147 Mha cropland needed by 2030

~445-598 Mha will be available

But global "cropland availability" is no guarantee of local availability or avoided deforestation

Location matters and trade-offs already occur:

- Remaining land mostly: Brazil, Argentina, DRC, Mozambique, Russia
- Agriculture is already a primary driver of deforestation
- Environmental governance needed

Meeting climate targets therefore requires location-specific interventions

3.69 billion ha forest globally in 2005

Avoiding 25% of forest emissions $(1.08 \text{ Gt CO}_2\text{e/yr})$ due to agriculture would require conserving ~1.2 Mha/yr globally in threatened forest areas

~4.7 Mha/yr

~ 4.32 Gt CO₂e/yr

III. Significant mitigation can be achieved by reducing conversion of forest to agriculture, but requires location-specific interventions

Conclusion

 Preliminary calculations indicate an aspirational sectoral target of ~1 GtCO₂e/y. by 2030.

- Business-as-usual and low emissions intensification won't be enough to meet this goal.
- Massive innovation and scale needed

Is more radical mitigation possible?

- Build on current options: combinations of strategies, more efficient structural changes in production, more effective governance of forests
- Invest in promising innovations: e.g., biomass carbon capture & sequestration, reduced-methane ruminants, crops with biological nitrification inhibitors
- Explore mitigation from dietary shifts and reducing waste

